Better Understanding the Costs of H.289

Jonathan Dowds, Renewable Energy Vermont Testimony to House Environment and Energy February 6th, 2024

What's Behind the Department's \$1 billion estimate of the cost of H.289

The Department's estimate of the cost H.289 is not based on any specific modeling of H.289. It includes two components:

- "Power supply costs" derived from a model created by SEA
- Transmissions costs derived from a worst-case study by VELCO

The Department did not make any changes to the SEA model or VELCO works to arrive at its cost estimates but applied what it termed "reasonable" and "conservative" adjustments to this work that are neither reasonable nor conservative.

Using the SEA Model to Estimate H.289 Costs

Department's SEA Model

- *Statewide* model that does not reflect the utility-specific provision included in H.289
- Has a finite number of scenarios with differing requirements for new regional and new in-state disturbed generation *none* of which align with H.289
- Cost outputs *can be modified* to approximate H.289. REV has made these modifications, the Department has not.

General Critique of the SEA Model

The scope of work that guided the model development lacked the ambition to understand what RES reform looks like as the power sector evolves:

- Excludes storage
- Excludes TOU rates to guide EV charging

Aligning the SEA Model with H.289

Modified the SEA Model to Align with H.289

- Converted the utility-specific provisions in H.289 to statewide averages
- Identified the SEA scenario that aligned best with H.289 (excluded nuclear, no change to biomass, renewable requirements)
- Scaled costs to reflect the difference between the SEA scenario and H.289

Results:

- Given SEA model assumptions, H.289 has real but modest impacts on utility costs and rates:
 - \$357 million over 10 years
 - The DPS Clean Energy proposal is \$165 million
 - Difference of 28 cents/mo in 2025 and \$1.87/mo in 2026 on an average utility bill

Department's Estimate of H.289 is *Higher* Than More Ambitious SEA Scenarios

	Scenario Modeled	Total Costs Over 10 Years*
REV Estimate of H.289	10 - 20% Tier IA by 2035 20% Tier II by 2035 New load for 100% renewable DUs	\$357 million
SEA: Scenario 5	30% Regional Tier by 2035 20% Tier II by 2035	\$403 million
Department Estimate of H.289	30% Regional Tier by 2035 30% Tier II by 2035	2/3 of Scenario 2 costs \$500 million

^{*}Costs are limited to market impacts and ignore climate/health benefits

Transmission Costs

The Department's estimated cost of \$500 million in additional transmission upgrades:

- Is not based on modeling by the Department or VELCO but rather estimated based on VELCO's worst-case scenario
- Assumed optimal siting of solar for the Department's proposal but not for H.289
- Ignores opportunities for innovative "non-wires" solutions
- Ignores overlapping upgrades for solar and electrification

Transmission Challenges: The Worst Case is Expensive

Brute force approach to a worst-case scenario

- Total upgrades cost: \$1.4B
 - Conservative/order of magnitude
 - We will likely not resolve all overloads
 - Cluster studies required

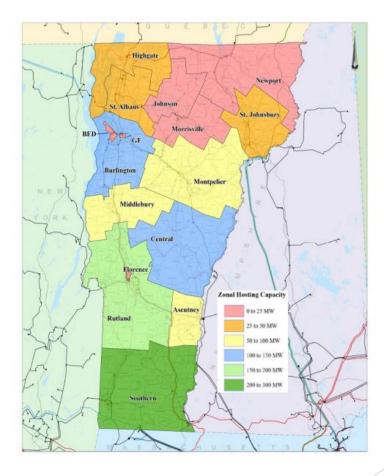
What is the worst case?

- Low demand
- High wind, solar, and hydro
- No flexibility in how we import our power
- No mitigation with storage
- A lot more transmission capacity
- Assume no additional transmission capacity to support electrification

Transmission Challenges: More Wires Aren't the Only Solution

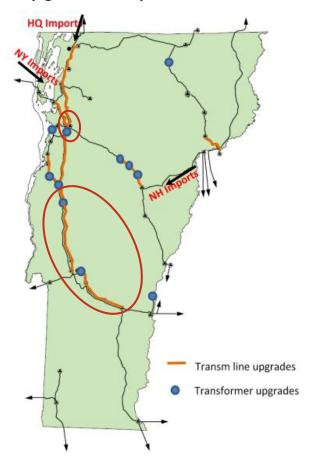
- Solution will be a hybrid solution
 - Real-time import adjustments
 - Real-time generation curtailments
 - Storage/Load management, etc.
 - Transmission

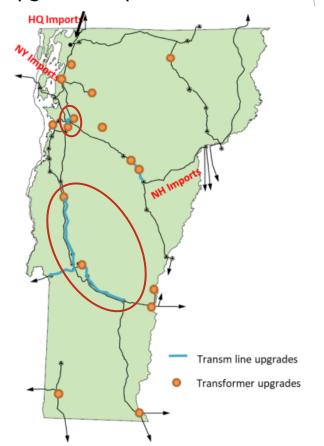
Avoid the Worst Case:


- Geographically target solar development (as the Department assumed for its proposal)
- Recognize the overlapping transmission needs for electrification and solar
- Leverage innovative solutions

Avoid the Worst Case: Targeted Deployment

Location Matters


- 5% overload allowed
- 1053 MW Maximum solar
 - Considering transmission and subtransmission constraints



Electrification and Renewables Require Overlapping Upgrades

Upgrades required for 20% Tier II

Upgrades required for electrification

Electrification and Renewables Require Overlapping Upgrades

Bulk System result summary – Policy Scenario

SUMMARY OF BULK SYSTEM	LEAD	ESTIMATED	
REGIONAL GROUPING &	& AFFECTED	TRANSMISSION PROJECT	SCREENED IN OR OUT OF
TRANSMISSION SOLUTIONS	DISTRIBUTION UTILIT	es cost	FULL NTA ANALYSIS
Northern area	Lead: GMP		In
 Install a new 115 kV line between Essex and Williston 	Affected: All VT	\$100M	75 MW of load
N-1-1 contingency causing overload & voltage collapse exposure	l /		eduction in northern
 Affected transformers: Queen City, Tafts Corner, Barre 	l /	Three X \$11M	area by 2033
 Need date is 2032 based on winter expected forecast 			Grows over time
Northwest area – includes northern area	Lead: GMP		In
Rebuild West Rutland to Middlebury 115 kV line	Affected: All V	\$215M	80 MW of load
N-1-1 contingency causing thermal overload			reduction in northwest
Affected transformer: Middlebury		\$13M	area by 2033
Need date is 2029 based on summer expected forecast			Grows over time
Central area – includes northwest area	Lead: GMP		In
Rebuild Coolidge - Cold River - North Rutland 115 kV line	Affected: All VT	\$185M	Keep load below 2033
N-1-1 contingency causing thermal overload	l \		load level in central
Affected transformers: North Rutland, Cold River, Windsor	l \	Three X \$13M	area
 Need date is 2034 based on summer expected forecast 		\ /	Grows over time
Southern area – includes central area	Lead: GMP	No VELCO estimate	In
 Rebuild NGRID Bellows Falls-Ascutney Tap 115 kV line and GMP 	Affected: All VT,		Keep load below 2033
Vernon Road to Newfane 46 kV	NGRID		load level in southern
N-1-1 contingency causing thermal overload			area
 Affected transformer: GMP Vernon Road 115/46 kV 			Grows over time
 Need date is 2034 based on summer expected forecast 			
State of Vermont	Lead: GMP	\$5M for	In
Install new 345 kV line between Vernon & Eversource Northfield, MA	Affected: All VT,	VELCO portion	Keep load below 2033
N-1-1 contingency causing thermal overload	Eversource		load level in Vermont
Affected transformers: Bennington		\$13M	Grows over time
 Need date is 2034 based on summer expected forecast 			

Employ Innovative Solutions

- ► Add flexibility to our power imports
- Incentivize EV charging during periods with high solar generation
- ► Take advantage of storage
- Curtail renewables as needed

