

Introduction to Renewable Energy Options

Renewable Energy Vermont (REV) May 2012

- About REV
- Vermont's Energy Future
- Technologies
- Costs & Financing Options
- Finding an Installer
- Next Steps

About Renewable Energy Vermont (REV)

Vermont's Energy Future

- Steps to a secure, clean energy future:
- Conservation
- Efficiency
- Renewables

Energy Sectors:

- Power
- Thermal
- Transportation

Re-Envisioning our energy Future: Moving Towards a Smart Grid

Energy in the 21st Century: Moving towards a Smart Grid

ermon

5 Types of Renewables

- Solar
- Wind
- Geothermal
- Bio~energy
- Hydro

Renewable Energy

Why Renewables?

- Reduce Carbon Footprint
- Fuel Price Certainty
- Cannot be "used up"
- Economic Development & Security
- National Security

Challenges

- Higher upfront cost and limited funding compared to conventional energy sources
- Aesthetics: "Beauty is in the eye of the beholder"
- Re-envisioning our electric grid

Solar Power

History

- Edmund Bequerel, 1839
- Albert Einstein, 1905
- Bell Laboratories, 1954
- Satellites in space, 1958


What is Solar Power?

• Electricity and heat generated from sunlight

Anatomy of a Solar Cell

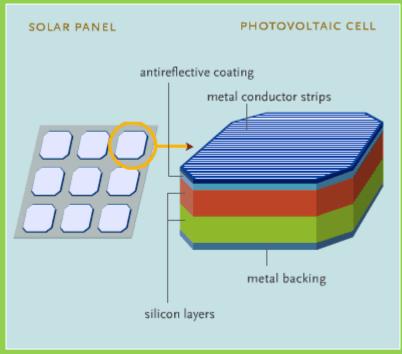


Photo credit: Stephanie Chasteen and Rima Chaddha

How Do Solar Photovoltaics Work?

Silicon Layers

Electric Field

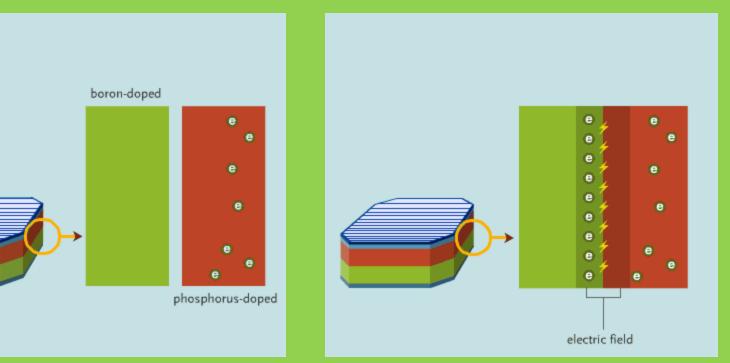
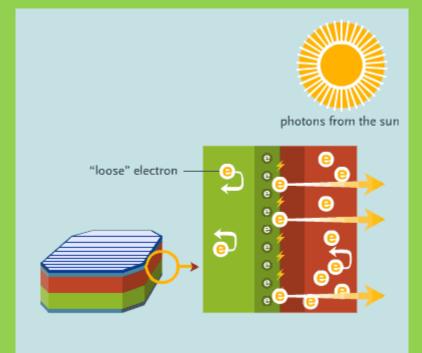



Photo credit: Stephanie Chasteen and Rima Chaddha

How do Solar Photovoltaics Work?

When Sunlight hits a cell

Generating Electricity

Photo credit: Stephanie Chasteen and Rima Chaddha

Average Residential System Size 5~10 kilowatt (kW)

- Residential: 5~10 kW
 - \$25,000 without incentives
- Commercial: 50 kW
 - \$190,000 without incentives

1kW=1,000 Watts

Solar Photovoltaics Things to Consider

- Silent electricity
- Unobtrusive, Take advantage of unused space (rooftops)
- Grid-tied systems can net-meter ("run your meter backwards")
- Lasts \approx 20 years
- Should be situated in full sunlight, shading can significantly reduce production
- Sun doesn't always shine
- Toxic chemicals used in PV production

Solar Hot Water

Basic Categories of Solar Hot Water Systems

- Passive
- Active
- Indirect
- Direct

- Five general types of solar hot water systems
- Integrated collector storage (ICS) (Passive)
- Thermosyphon (Passive)
- Open-Loop Direct (Active)
- Pressurized Glycol (Active)
- Closed-Loop Drainback (Active)

Solar Hot Water Explained

- The solar collector absorbs sunlight
- A pump moves glycol within a piping loop, where it is heated

Typical Direct Pump System

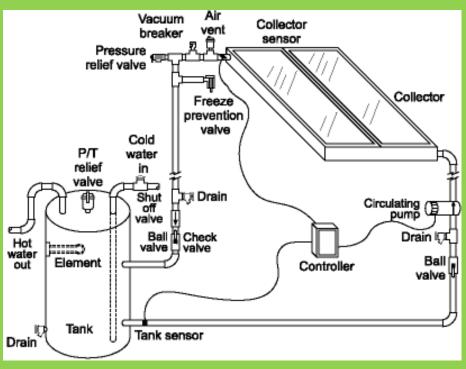


Photo Credit: Florida Solar Energy Center

Solar Hot Water Explained

- Heat is transferred to solar hot water tank
- Glycol is pumped back to solar collectors
- Loop repeats until sun sets and pump turns off

Photo Credit: Bill Spence

Solar Hot Water: Passive Systems

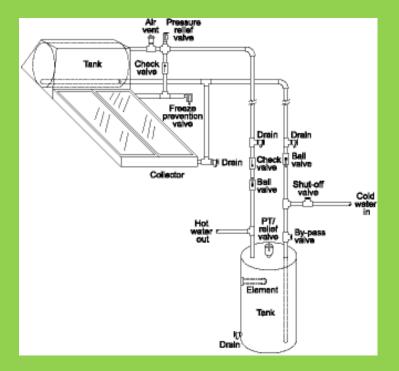


Figure 1. Thermosiphon system

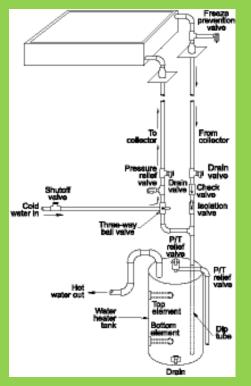
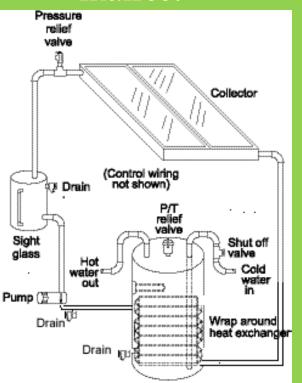
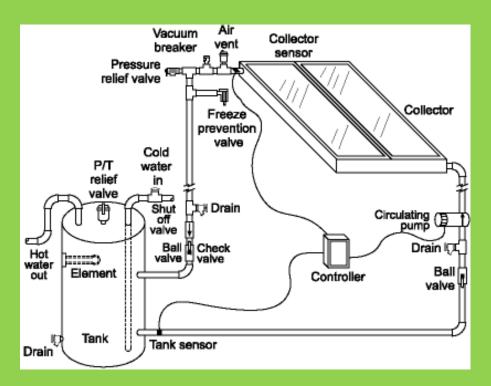



Figure 2. Integral collector storage (ICS) system

Solar Hot Water: Active Systems

Indirect

Direct



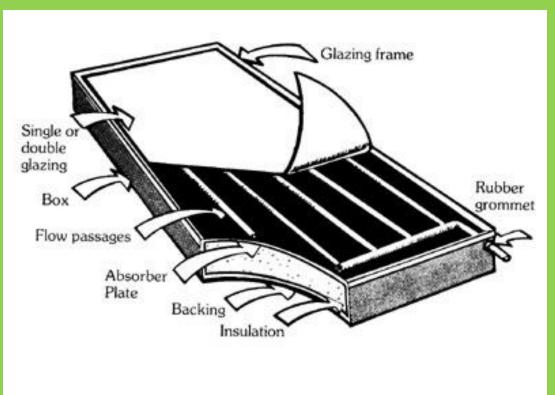

Figure 1. Indirect pumped system

Figure 2. Typical Direct Pump System

Photo credit: Florida Solar Energy Center

Solar Hot Water: System Components

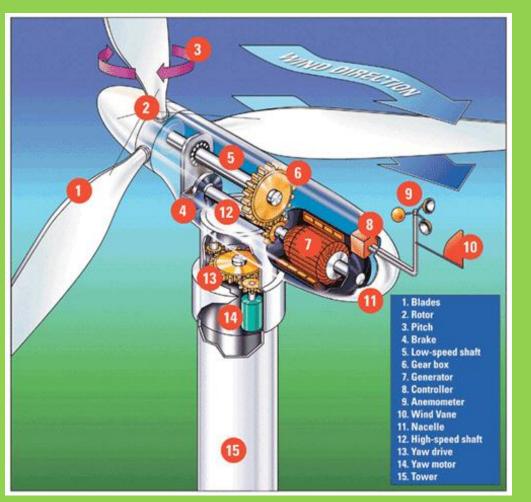
Solar Collector

Average Solar Hot Water System

- Residential: two 4' x 8' collectors yield 60~80 kBTU
 - \$7,000~\$10,000
- Commercial: 250 kBTU
 \$20,000~ \$25,000

Solar Hot Water Things to Consider

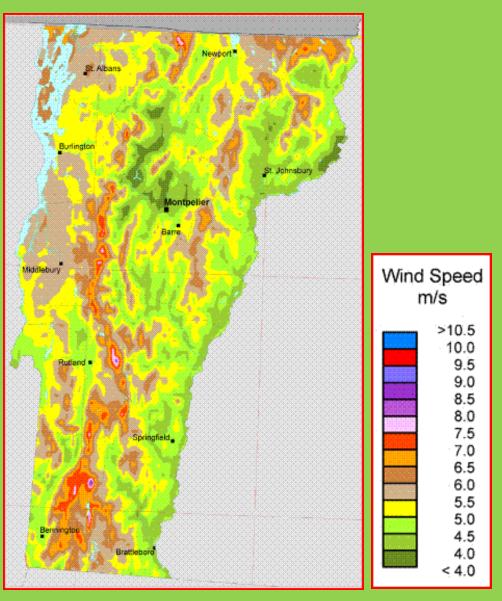
- If half of all households used solar water heaters, the reduction of CO_2 emissions is the same as doubling the fuel efficiency of cars
- Pay back in 4~8 years
- Last 15-40 years
- Does not account for all of your heating needs
- Still require backup heater


Wind Power Explained

- Form of solar energy
- Convert kinetic energy in wind to mechanical power
- Wind turns blades → spins rotor shaft → series of gears
- Generator converts mechanical power → electricity

October 19, 1941- Grandpa's Knob Castleton, Vermont

Wind Turbines



Wind Potential in Vermont

Average System Size

- Residential: 10kW
- Community: 100kW
- Commercial: 2 MW
- 1 megawatt (MW)=
 1000 kilowatts

10 kW

Wind Things to Consider

- Turbines last 20-25 years
- Need steady, consistent wind

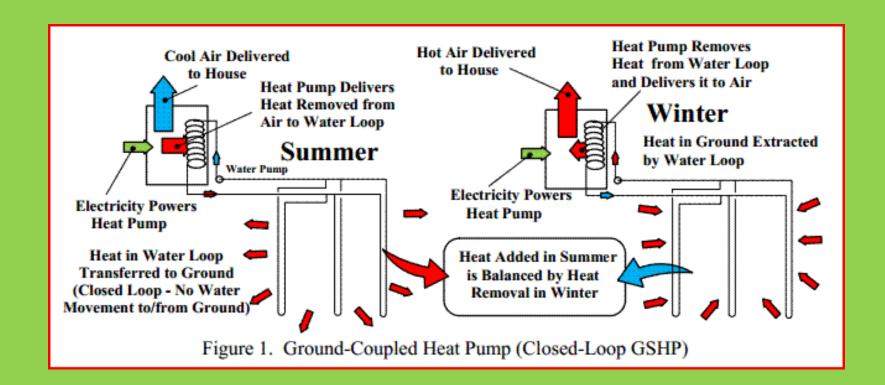
• Need to build turbines high enough: 80 ft. tall, wind speeds >10mph

Commercial scale is one of the lowest-cost renewable energy
 4 to 6 cents/ kWh

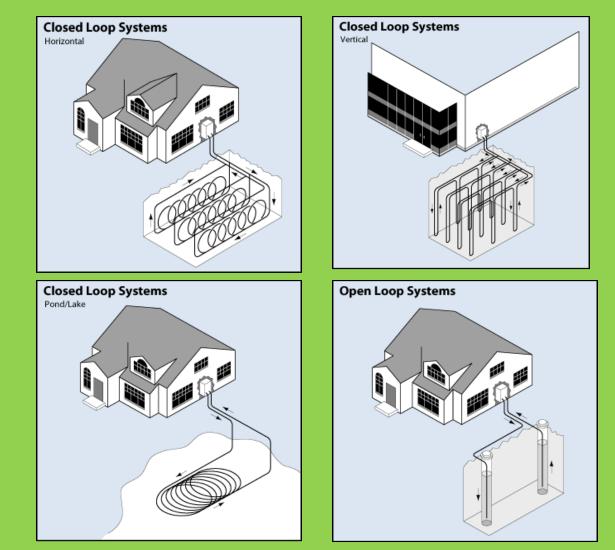
Lights on commercial-sized turbines

Geothermal Explained

Most common type of Geothermal in Vermont: Ground Source Heat Pump


How it works

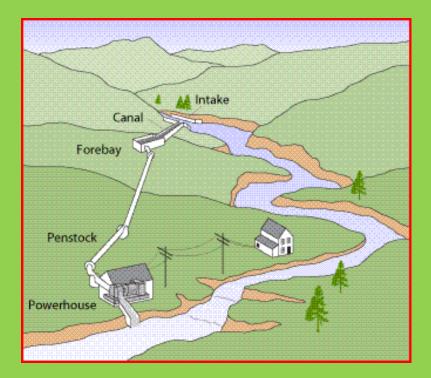
- A heat-transfer fluid circulates through pipes buried in the ground
- Heat from earth warms fluid in pipes
- Warmed fluid is pumped through system to indoor air delivery system
- Process is reversed in summer



Geothermal: Ground Source Heat Pump

Geothermal

Geothermal Things to Consider


- Use 25% ~ 50% less electricity than conventional heating/cooling systems
- Reduce emissions up to 40% compared to conventional heating/cooling systems
- Maintain 50% relative indoor humidity
- Can be new or retrofitted
- Piping lasts 25~50 years
- Heat pumps last 20+ years
- Underground pipes not easily accessible
- Need electricity to operate, not zero emissions unless combined with solar PV
- Installation requires large trench
- Toxic refrigerants

Ouiet

Hydro Power

- Energy in flowing water
- Run-of-the-river systems
- Water is channeled to turbine/ waterwheel
- Moving water spins a shaft
- Pumps water or powers alternator or generator

Bioenergy

Energy from plants and plantderived materials

- Biomass
- Biofuels
- Biogas

Average Residential System Cost

	Average Size (kW or kBTU)	Average cost (\$)	Average Energy Provided (kWh or kBTU/day)
Solar (Photovoltaic)	5 kW	\$25,000	5200 kWh
Solar (Hot Water)	Two 4' x 8' collectors; Each collector with a capacity of 30 kBTU/day (or 8.8 kWh)	\$7,000 - \$10,000 installed	60-80 kBTU/day per 2-collector system
Wind	5kW 10kW	\$45,000 \$80,000	4,500 kWh/year 11,000 kWh/year
Geothermal	Min. 3 tons (36,000 BTUs) 10-12 (tons small residential)	Typical 1500 sq ft. house	Depends on size of residence and temperature outside
Biomass	35,000 – 200,000 Btu/hr Pellet Boilers	\$15,000 - \$40,000	Will heat 1,00 -4,000 square foot home of average construction

Average Non-residential System Cost

	Average Size (kW)	Average cost	Average Energy
		(\$)	Provided (kWh)
Solar	50 kW	\$190,000	51,000 kWh
(Photovoltaic)			
Solar	No Data	No Data	No Data
(Hot Water)			
Wind	100 kW	\$585,000	120,000 kWh/year
	750 kW	\$2,500,000	1,300,000 kWh/year
Geothermal	Small Scale commercial:		
	10~12 tons (120,000 BTUs~		
	144,000 BTUs)		
Biomass - Pellet	200,000– 2 million Btu/hr	\$50,000 - \$500,000	20,000 -75,000 square foot school in Vermont climate
Biomass - Woodchips	1 million – 9 million Btu/hr	\$1 million - \$4 million	50,000 – 500,000 square foot school in Vermont Climate

Financing Options

Property Assessed Clean Energy (PACE)

- Special assessment on property tax
- Only in towns that have elected PACE on Town Meeting Day
- Financing energy improvements for residences
- 15% of assessed value of property or \$30,000, whichever is less
- Term of assessment is a maximum of 20 years, or the average measure life of the improvements, whichever is less.

VSECU Solar Loans

- .25% discount off current home equity loan rates
- Minimum loan amount is \$5,000
- Total maximum amount is \$200,000 or 90% of loan-tovalue, whichever is less
- Fixed rates as low as 3.74%
- Monthly payment per \$1,000 borrowed: \$8.57~\$18.75
- https://www.vsecu.com/loans/otherloans/solar-loans

http://pacevermont.wikispaces.com/

Financing Options Vermont Small Scale Renewable Energy Incentive Program

Solar Photovoltaic and Hot Water Incentive Amounts

Customer Type	Installer	Incentive Amount (\$/Watt or 100 Btu/d))	Maximum Incentive
Residential/ Commercial & Industrial	Vermont Solar Partner	Res: \$0.65/Wup to 10kW C&!: \$0.60/Watt up to 60kW \$1.50/100Btu/day	Residential-10kWPV;200kBtu/dSHW \$10,500 2 year max C&I-60kWPV1100kBtu/dSHW \$52,500 2 year max
Special Customer*	Vermont Solar Partner	\$2.25/W up to 10kW; \$1.50 from 10kW to 60kW \$3.00/100 Btu/day up to 1,500kBtu/day	PV - \$97,500 SHW - \$45,000 * or *50% of installed cost whichever is lesser
Leasing - Residential	Vermont Solar Partner	\$0.65/W up to 10kW \$1.50/100Btu/day up to 200kBtu/day	\$6,500 –PV \$3,000 -SHW
Leasing – C&I and Special Customer	Vermont Solar Partner	0.60/W up to 60kW \$1.50/100Btu/day up to 1,100 kBtu/day	\$36,000 – PV \$16,500 - SHW
Efficiency Adder	Vermont Solar Partner	\$0.10/W PV \$0.50/100Btu/day SHW	3.5kW Residential PV; 4.5 kW C&I and Special Customer PV 70kBtu/day Residential SHW; 90kBtu/day C&I and Special Customer SHW

Not shown here: Wind Incentive Amounts, Hydro Incentive Amounts

www.rerc-vt.org

Financing Options

USDA REAP Loan

- Agricultural producer or rural small business
- Loan Limits:
 - Up to 75% of project's cost
 - Maximum of \$25 million, minimum of \$5,000
- Maximum % Guarantee
 - 85% for loan of \$600,000 or less
 - 85% for loan of \$600,000 or less
 - 80% for loans greater than \$600,000
 but \$5 million or less
 - 70% for loans greater than \$5 million up to \$10 million
 - 60% for loans greater than \$10 millon up to \$25 millon

USDA REAP Grant

- Unit of State, tribal, or local government, institutions of higher education, rural electric cooperatives, or a public power entity
- Designed to assist farmers, ranchers and small businesses
- Minimum:
 - \$2,500 (system); \$1,500 (efficiency);
 None (feasability study).
- Maximum:
 - \$500,000 (system); \$250,000
 (efficiency); \$50,000 (feasability study)

Financing Options

30% Residential Tax

Credit

- Federal, personal tax credit
- Solar (PV & SHW), Wind, Geothermal Heat Pumps, Fuel cells using renewable fuels
- No maximum dollar amount
- Excess credit may be carried forward to next tax year
- Does not have to be principle residence
- http://www.dsireusa.org/incentives/ince ntive.cfm?Incentive_Code=US37F

For more information visit: Database of State Incentives for Renewables and Efficiency (DSIRE) www.dsireusa.org

How To Find an Installer:

Visit www.revermont.org

Questions?

Contact REV Julie Bellino Operations Coordinator (802) 229-0099 julie@revermont.org

Mailing Address: P.O. Box 1036 Montpelier, VT 05601